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Abstract: The flow in a 3D wall bounded channel, simulated using the direct simulation Monte Carlo (DSMC) method, has been 
used as a test bed for examining different aspects of transition and turbulence at high Mach  M = Um / (◊( g kB Tw /m), and Reynolds 
numbers Re = (ρm Um H)/mw. Here, H is the channel half-width, Um is the mean velocity, ρm is the mean density, Tw is the wall 
temperature, m is the molecular mass, mw is the molecular viscosity based on the temperature at the isothermal wall, and kB is the 
Boltzmann constant. 
The laminar-turbulent transition is accompanied by a discontinuous change in the friction factor even at high Mach number. The 
transition Reynolds number increases faster than linearly with Mach number, and the Knudsen number at transition (also proportional 
to the ratio of Mach and Reynolds numbers) passes through a maximum as the Mach number is increased. This maximum value is 
small, less than 0.009, indicating that transition is a continuum phenomenon even at high Mach numbers. 
In a high Mach turbulent flow, wall slip in the temperature and the velocities are significant. Slip occurs because the 
temperature/velocity of the molecules incident on the wall could be very different form that of the wall, even though the 
temperature/velocity of the reflected molecules is equal to that of the wall. There is slip even in the mean velocity as well as the 
intensity of the turbulent velocity fluctuations tangential to the wall. 
In a compressible turbulent channel flow, we examine the result that the Kolmogorov scale, h ~ (H Re-3/4) becomes asymptotically 
smaller than the mean free path, λ ~ (H  M/Re), for M >> Re1/4. The simulation show that the ratio (mean free path to Kolmogorov 
scale)  does decrease as Re-1/4, but it does not increase linearly with Mach number. This is due to the decrease in the local Mach 
number within the channel, due to the increase in the temperature by viscous heating. 

 
MOLECULAR  SIMULATION 

 
A molecular simulation technique, the direct simulation Monte Carlo (DSMC) algorithm [1], is used to study the 
different aspects of transition and turbulence in the flow in a ‘channel’ [2] [4], of width 2H bounded by plane walls at y 
= ±H. The non-dimensional parameters are the Mach number, the Reynolds number, the Prandtl number, and the ratio 
of specific heats. Here the fluid is assumed to be an ideal gas with molecular diameter d = 1.0 × 10−10 m, molecular 
mass m = 1.0 × 10−26 kg/molecule, specific heat ratio γ = 1.4, Prandtl number Pr = 0.7. We use a variable hard sphere 
(VHS) molecular model with viscosity increasing as T0.7, where T is the absolute temperature. Our study is restricted to 
a maximum Reynolds number of about 104 and a maximum Mach number of 30. The DSMC simulations used here are 
fundamentally different from direct numerical simulations of the compressible Navier-Stokes equation. The DSMC 
method uses a probabilistic Monte-Carlo algorithm for simulating the Boltzmann equation for the velocity distribution 
function in dilute gases. Due to the use of the molecular chaos approximation in the Boltzmann equation, the simulation 
is restricted to dilute gases in the ideal gas limit. The DSMC method is preferred over the continuum Navier-Stokes 
equations both for compressible flows at high Mach numbers, where there could be significant errors in the solutions of 
the Navier-Stokes equations, as well as in the finite Knudsen number regime where the mean free path is comparable to 
the macroscopic length scale. In the DSMC algorithm, the evolution of the positions and velocities of ‘simulated 
molecules’, each of which represents a large number of real molecules, is followed in time and space. A probabilistic 
model, which reproduces correctly the variation of macroscopic properties, such as the pressure and viscosity, is used 
for the inter-molecular interactions. There are molecular effects which are inherently captured by the DSMC 
simulations which need to be modeled in simulations based on the Navier-Stokes equations. The DSMC simulations do 
predict a wall slip based on the molecule-wall collision laws, because even though the reflected molecules have the 
same mean velocity as the wall, the incident molecules do not necessarily have the same velocity. In a continuum 
simulation, it is necessary to model the wall slip. Previous DSMC simulations [3] have also shown the presence of 
temperature slip, that is, the gas temperature at the wall is different from the wall temperature. DSMC simulations can 
also be used for low Knudsen number flows, where the mean free path is comparable to the system size. Further, it is 
possible to compare the mean free path with other flow length scales, such as the Kolmogorov scale, because the mean 
free path can be explicitly calculated in the DSMC simulations. 
 

TRANSITION AND TURBULENCE 
 

Transition in a channel flow is usually inferred from a discontinuous change in the friction factor (scaled pressure drop) 
as the Reynolds number (or mean velocity) of the flow is increased. Here, the friction factor f is defined in terms of the 



 

 

pressure gradient (∆p/L) or the wall shear stress (τw) by the equation,  ( ) ( ) ( ),2/)(2/ 2
mm UfHLP ρ=×Δ where 2H is 

the channel width, ρm is the mean density, and Um is the mean velocity. The plot of friction factor vs. Reynolds number 
for high Mach number flows is shown in  figure 1 (a), (b). It is clear that the discontinuous change in the friction factor 
is observed even at high Mach numbers, though both the transition Reynolds number and the value of the friction factor 
increase with Mach number. Also observed is the hysteretic behavior of the transition; the transition Reynolds number 
for the laminar-turbulent transition is higher than that for the turbulent-laminar transition as shown in  figure 1 (c), (d). 
 
The velocity and temperature slip at the wall for mean and fluctuating components can be expressed as, 
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increasing Mach number slip length increases, as shown in figure 1 (e), (f). The velocity fluctuations (u’/Um), (v’/Um),  
(w’/Um); density fluctuations (r’/rm); and velocity vector for fluctuating velocities  at  Re = 104, M = 30 (turbulent 
state) on (x − z)-plane at y/H = 0.95 are shown  in  figure 1 (g), (h), (i), (j), (k). 
 
The variation of Kolmogorov scale η = (ν3/e)1/4 scaled by the channel width H, and the ratio of mean free path (λ) and 
the Kolmogorov scale (η), are studied for different Mach numbers. There is a large variation in the Kolmogorov scale, 
by a factor of 2−3, across the channel. However, the mean free path is nearly a constant across most of the channel, 
because the temperature is nearly constant. Due to this, (λ/η) varies by a factor of 2-3 across the channel. It is observed 
that the  value of (λ/η) varies by a factor of 3 when the Mach number is increased from 3 to 30 as shown  in  figure 1 (l). 
However, when the local value of (λ/η) is scaled by its maximum value in the channel, we find a data collapse onto a 
single graph.  
 
The classical turbulence scaling predicts that the ratio of the mean free path and the Kolmogorov scale, (λ/η), is 
proportional to (M/Re1/4). Figure 1 (m) shows that (λ/η), averaged across the interior of the channel excluding 20% of 
the volume adjacent to the walls, is indeed proportional to Re−1/4 for the entire range of Mach numbers studied here. 
However,  figure 1(m) shows that the ratio does not increase linearly with Mach number. This is due to the decrease in 
the local Mach number within the channel, due to the increase in the temperature by viscous heating. 
 
A counter-intuitive result obtained is that the Kolmogorov scale could be smaller than the mean free path. However, the 
smallest length scale for gradients in the continuum approximation is not the mean free path, but the distance between 
molecules. The distance between molecules is proportional to n−1/3, where n is the number density of the molecules. The 
mean free path, which is the average distance between successive collisions, is much larger than the distance between 
molecules, due to the small probability that two nearest molecules are moving towards each other. The ratio of the 
distance between molecules and the mean free path is proportional to (n−1/3 / (nd2)) ~ (nd3)−4/3, which is proportional to 
φ−4/3, where φ is the volume fraction of the molecules. Since the volume fraction is small for a dilute gas, the distance 
between molecules could be much smaller than the mean free path. We have verified, in the simulations, that the 
Kolmogorov scale is much larger than the distance between molecules. In figure 1 (n), the ratio mean molecular spacing 
to Kolmogorov scale 1/(η n1/3) is  plotted as a function of the wall-normal distance. It is clearly observed that this ratio 
is much less that 1, indicating that the smallest length scale for the gradients is much smaller than the Kolmogorov 
scale. 
 

RESULTS 
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Figure 1.  DSMC simulation results 
References : 
[1] Bird, G.A. 1994, ”Molecular gas dynamics and the direct simulation of gas flows,” Clarendon Press, Oxford.  
[2] Coleman, G. N., Kim, J., and Moser, R. D. 1995, ”A numerical study of turbulent supersonic isothermal-wall channel flow,” J. Fluid Mech,       
Vol    (305), pp. 159. 
[3] Pradhan, S., and Kumaran, V. 2011, ”The generalized Onsager model for the secondary flow in a high-speed rotating cylinder,” J. Fluid Mech, 
Vol (686), pp. 109. 
[4] Spina, E.F., Smits, A.J., and Robinson, S. K. 1994, ”The physics of supersonic turbulent boundary layers,” Ann. Rev. Fluid Mech, Vol (26),       
pp. 287.  

M

K
n

0 5 10 15 20 25 30
0.000

0.002

0.004

0.006

0.008

Turbulent-laminar

Laminar-turbulent

(d)
M

ls <
u>

/H
,

ls u’
/H

,
ls w

’
/H

0 5 10 15 20 25 30

0.00

0.02

0.04

0.06

0.08

<u>
u’
w’

(e)
M

ls <
T

>
/H

,
ls T

’
/H

0 5 10 15 20 25 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

<T>
T ’

(f)

v’ / Um: -0.15 -0.10 -0.05 -0.00 0.05 0.10 0.15

(h)

u’ / Um: -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60

(g)

w’ / Um: -0.20 -0.13 -0.07 -0.00 0.07 0.13 0.20

(i)

ρ’/ρm: -0.06 -0.04 -0.03 -0.01 0.01 0.02 0.04 0.06

( j )

(k)

M

(λ
/η

)
R

e1/
4

0 5 10 15 20 25 30
25

30

35

40

45

50

55

60

(l)

#

#

#

#

#
#

#

#

#

⊗

⊗

⊗

⊗

⊗
⊗

⊗

⊗

⊗

y / H

1/
η

n1/
3

0.0 0.2 0.4 0.6 0.8 1.0

6.0x10-08

8.0x10-08

1.0x10-07

1.2x10-07

1.4x10-07

1.6x10-07

1.8x10-07

(n)

####

⊗⊗⊗⊗

Re

(λ
/η

) pe
ak

7000 8000 9000 10000

4

6

8

10

12 M = 30
M = 20
M = 10
M = 5
M = 3

#

⊗

Re-1/4

(m)


