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Abstract
Flows between concentric, counter rotating spherical boundaries are under investigation in a gap with a size equal to the inner sphere radius. The outer sphere rotational rate is fixed, while the inner sphere rotational rate was modulated. The amplitudes and frequencies of modulation are small relative to the averaged rotational rates of both spheres. With modulation amplitude increase, a transition from initial periodical flow to chaos occurs. To determine the state of the flow, time series of azimuthal velocity were used. Measurements were carried out by laser Doppler anemometer. Flow states with chaos–chaos and cycle–chaos–chaos intermittency were detected. The quantitative characteristics are considered, which allow separate different

patterns of the flow state with distinct properties.
We study the possibility of obtaining temporally alternating turbulence in SCF with modulated in time boundary conditions. Transitions to chaos in CCF, induced by sharp changing of one of the boundaries rotational rate, are well known beginning from [1]. Similar procedure was used for transitions to chaos investigations in the flow around torsionally oscillating sphere [2]. For our experiments in SCF we use the same technique – transition to turbulence occurs with the growth of periodical modulation amplitude of inner sphere rotational rate, averaged angular velocities of both spheres remain constant.  Steady SCF with stationary boundary conditions is determined by three dimensionless parameters. They are the Reynolds numbers for inner (Re1 = (1 r12 / () and outer (Re2 = (2 r22 / () spheres and relative gap size ( = (r2  (  r1)/ r1. Here r1, r2 are the radii and (1, (2 the angular velocities of inner (index 1) and outer (index 2) spheres, ( is the kinematic viscosity of the fluid in the gap. The modulation of inner sphere angular velocity takes place in accordance with the law: (1(t) = (10 (1+A sin (2(ft + (1)), where A and f are the amplitude and frequency of modulation, (10 – averaged  magnitude of inner sphere angular velocity, initial value of phase (1 is undefined. In case of modulation we use modified Reynolds number Rem = (A Re1)(δ1/r1), where δ1 = (2ν/2πf)1/2 . Amplitudes and frequencies of modulation are small relative to their average values: A ≤ 0.2, 2πf/(10 ≤ 0.1.
 Experimental setup represents two independently rotating coaxial plexiglas transparent spheres with r1 = 75mm and r2 = 150mm, ( = 1. Gap between spheres is filled by silicon oil with high viscosity (near 50·10-6m2/s at 220C). Small amount of aluminium flakes is added in working fluid for flow visualization. Local azhimuthal velocity uφ(t) is measured near the outer sphere by laser Doppler anemometry with allowable velocity range 0.003 – 1 m/s. Synchronous acquisition of the time series of flow velocity and inner sphere rotational rate continues more than 3582s, that is 1140 -1170 outer sphere revolutions. Both spheres are placed into thermostat, filled with silicon oil to keep constant temperature in the layer with accuracy not less than ± 0.050C. As initial flow state we choose periodical flow, called in [3] “localized vortices”. This flow state is formed in wide layer with counter rotating spheres [3], in this study we use the following combination of control parameters Re1 = 412.5 ± 0.5 and Re2 = -900 ± 1. The action of modulation at constant f magnitude begins from zero value of A, we increase A step by step (dA ≤ 0.01) up to transition to chaotic flow state, transition is occurred throw breakdown of initial flow state.
In fig. 1(a) small portion of turbulent flow velocity time series is shown depending on non dimensional time τ = t (ν / r12). Different patterns of the signal with duration more than modulation period are clearly seen. Parts 1 and 3 represent distorted sinusoidal signal with frequency close to inner sphere modulation frequency. Parts 2 and 4 represent chaotic signal. Part 5, tentatively restricted from the right, represents modulated sinusoidal signal. Its frequency is less than modulation one and coincides with initial flow state frequency. Parts 1, 3 may be named as weak turbulence, parts 2, 4 – as strong turbulence, and part 5 – as laminar flow state. So, in this time series we observe cycle-chaos-chaos type intermittency. A question arises how one may distinguish patterns with different turbulence and what difference one may find in their properties. For this purpose we have chosen from a variety of known methods one, described in [4] and based on the introduction of phase not only for periodical signal, but for arbitrary one. According [4] the instant values of the phase Ψ(t) of the signal x(t) may be determined as 
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, where y(t) is orthogonal complement to x(t) and is calculated as its Hilbert transform. Following this method we obtain instant values of phases, both for azimuthal flow velocity in separate point Φ0(t)  and for rotational rate of inner sphere Φ1(t).  

Results of application of this approach: phase difference ΔΦ(t) = Φ1(t) – Φ0(t) and its derivative 
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  – instant frequencies difference – are present in fig.1(b). χ locates at the top, and ΔΦ, smoothed by eliminating π jumps  – at the bottom. ΔΦ behavior (fig.1(b)) is slightly different for strong and weak turbulence. ΔΦ for weak turbulence is smoother and keeps the slope sign: slope is near zero in part 3 and negative in part 1. Slope of ΔΦ for strong turbulence does not keep sign. χ fluctuations for weak turbulence (parts 1, 3) are less than for strong ones (parts 2, 4). This means that in the case of weak turbulence synchronization exists between inner sphere and flow oscillations, what confirms by instant frequency adjustment. Laminar flow (part 5) differs from both turbulent ones by the least χ fluctuations level and by the constant positive slope of ΔΦ.
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Figure 1. (a) – smoothed signal of inner sphere angular velocity Ω1 (top) and raw signal of azimuthal velocity uφ (bottom) at Re m = 7.4 depending on non-dimensional time τ common for both (a) and (b).  (b) – raw instant frequencies difference χ (top) and smoothed (bottom) phase difference ΔΦ. All variables except τ are in arbitrary units. 
.

In our experiments we have received three time series with cycle-chaos-chaos intermittency and then, by increasing Rem, three time series with chaos-chaos intermittency. Relative time length of laminar parts λla decreases with the growth of Rem in the first case, and disappear for the chaos-chaos intermittency. Relative time lengths of strong λs and weak λw turbulence in first case demonstrate existence of local extremes depending on Rem. In second case this dependence is linear. In the plot of χ rms, calculated along the whole time series, there is a local minimum in the point of transition from one case to another. Thus both kinds of intermittency differ from each other.
In summary, presented results show the possibility of formation of complex turbulent flows with arbitrary alternating in time behavior. The reason of such behavior is the action of inner sphere rotation rate modulation, which may be considered as external force relative to the flow in the gap. This external periodical force may synchronize the flow, what means frequency and/or phase lock in. It is likely, that weak and strong turbulent fragments in time series of measured velocity are distinguished from each other by synchronization level, and different magnitudes of χ rms confirm that. On the other hand, the laminar flow states presence results in increasing phase difference as it may be concluded from ΔΦ curve inclination in the part 5 in fig. 1. So, Rem growth promotes to forced synchronization, and laminar patterns existence resists it. Competition of these two processes gives complex dependence of weak and strong turbulence time duration on Rem. When laminar patterns disappear, only one process influences on time durations λs and λw, and that may explain their linear behavior during chaos-chaos intermittency. Further investigations are need for more detailed explanation of the modulation influence on intermittency formation.
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