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LOG-STABLE LAW OF ENERGY DISSIPATION RATE FOR TURBULENCE INTERMITTENCY

Hideaki Mouri
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Abstract To describe the small-scale intermittency of turbulence, a self-similarity is imposed on the probability density function of a
logarithm of the rate of energy dissipation smoothed over a length scale among those in the inertial range. The result is an extension of
Kolmogorov’s classical theory in 1941, i.e., a one-parameter framework where the logarithm obeys some stable distribution. We obtain
the scaling laws for the dissipation rate and for the two-point velocity difference.

INTRODUCTION

Turbulence is intermittent at small length scales in the inertial and dissipation ranges. A representative example is the rate
of energy dissipation per unit mass ε. If smoothed over a scale in the inertial or dissipation range, it is significant only
within a fraction of the space. This fraction decreases with a decrease in the scale. Such small-scale intermittency has
been a subject of intensive studies for decades [1].
The central issue is to obtain a statistical framework. Especially for the dissipation rate εr smoothed over length scale r in
the inertial range, we expect a power-law scaling 〈εm

r 〉 ∝ rτm . The exponent τm has to satisfy τm/m > −D at m > 0 [1]
and τm/m → −D as m → +∞ [2], where D is the dimension of the smoothing region. We are to formulate a framework
that is consistent with such constraints [3].

BASIC SETTINGS

For a fully developed state of homogeneous and isotropic turbulence, the dissipation rate ε is smoothed over length scales
r in the inertial range. We consider the one-dimensional smoothing case D = 1, by averaging ε over a segment of length
r centered at a position x along a line in the three-dimensional space as εr(x) = (1/r)

∫
|x′−x|≤r/2

ε(x′)dx′. The three-
dimensional smoothing case D = 3 is also considered, by averaging ε over a spherical volume of diameter r centered
at a position x as εr(x) = (6/πr3)

∫
|x′−x|≤r/2

ε(x′)dx′. By using the largest scale R of the inertial range, we define
random variables χr(x) = ln[rεr(x)/RεR(x)] for D = 1 and χr(x) = ln[r3εr(x)/R3εR(x)] for D = 3.

DISSIPATION RATE

The following conditions are imposed on the inertial range at r ≤ R: (i) the probability density function (PDF) of
χr1 −χr2 depends only on r1/r2 for any pair of r1 and r2; (ii) the PDFs of χr1 −χr2 , χr2 −χr3 , ..., χrN−1 −χrN do not
depend on one another for any series of r1 < r2 < · · · < rN ; and (iii) the PDF of χr is self-similar. If the sign , is used
to denote that the two random variables obey the same distribution, the condition (iii) is such that a constant Cr1,r2 > 0
exists for any pair of r1 and r2 to have Cr1,r2χr1 , χr2 . From these conditions, it follows that the variable χr is strictly

stable at each scale r and is described as χr ,
[
ln

(
Rβ/rβ

)]1/α
χ∗ with 0 < α ≤ 2 and β > 0.

Here is a mathematical explanation [4]. The conditions (i) and (ii) allow us to regard χr as a stochastic Lévy process χt

for the time parameter t = ln(Rβ/rβ) ≥ 0. If χt has a self-similar PDF, χt is said to be strictly stable. By defining χ∗ as
χt at t = 1, we have χt , t1/αχ∗ with a parameter 0 < α ≤ 2.
The strictly stable distributions make up a three-parameter family. Except for α = 1, the characteristic function of χ∗
is 〈exp(iχ∗ξ)〉 = exp(−λ|ξ|αeiπθξ/2|ξ|). While λ > 0 determines the width of the PDF, α and θ determine its shape
(|θ| ≤ α for 0 < α < 1 and |θ| ≤ 2 − α for 1 < α ≤ 2). We focus on the distributions for 0 < α < 1 and θ = α. They
alone are totally skewed to the left, i.e., χ∗ ≤ 0, which is required from χr ≤ 0.
To formulate the case of D = 1, we use 〈rmεm

r /Rmεm
R 〉 = 〈exp(mχr)〉, which is rewritten by using the above relations

and by replacing ξ with −im. This replacement holds valid at m ≥ 0. The result is 〈εm
r /εm

R 〉 = (r/R)−m+mαβλ exp(πα/2).
Finally, to eliminate the parameters β and λ, we impose a condition (iv) such that εR is constant at 〈ε〉. Then,

〈εm
r 〉

〈ε〉m
= (r/R)−m+mα

with 0 < α < 1 for D = 1 at m ≥ 0. (1a)

By replacing the length ratio r/R with the volume ratio r3/R3, the case of D = 3 is formulated as

〈εm
r 〉

〈ε〉m
= (r/R)−3m+3mα

with 0 < α < 1 for D = 3 at m ≥ 0. (1b)

Thus, we have τm = −Dm+Dmα for 〈εm
r 〉 ∝ rτm [3]. The intermittency is described by the parameter α. In particular,

the limit α → 1 reproduces the 1941 theory of Kolmogorov, i.e., τm = 0 [1].
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Figure 1. Comparison of our framework with numerical simulations [5, 6, 7]. The dissipation exponent τm is for the case of D = 3 in
Eq. (1b). The velocity exponent ζm is for the case of D = 1 in Eq. (2). Dotted lines denote the 1941 theory of Kolmogorov [1].

VELOCITY DIFFERENCE

Also for the two-point velocity difference δur(x) = u(x + r) − u(x), where u is parallel to the line through the two
points, we have a power-law scaling 〈|δum

r |〉 ∝ rζm at m ≥ 0 [3]. The exponent ζm is from the exponent τm for the
dissipation rate εr via 〈|δum

r |〉 ∝ 〈(rεr)m/3〉 and hence via ζm = τm/3 + m/3 [1]. In the case of the one-dimensional
smoothing D = 1 [Eq. (1a)],

〈|δum
r |〉 ∝ r(m/3)α

with 0 < α < 1 at m ≥ 0. (2)

The limit α → 1 reproduces the 1941 theory of Kolmogorov, i.e., ζm = m/3 [1]. We do not consider the three-
dimensional smoothing case D = 3 [Eq. (1b)]. The velocity difference δur is an integral of the velocity derivative ∂u/∂x
over the separation r, while an integral of (∂u/∂x)2 is one of the components of the dissipation rate εr. Regions of these
two integrations are identical in the case of D = 1. They are not identical in the case of D = 3.

COMPARISON WITH SIMULATIONS

Figure 1 compares the scaling laws 〈εm
r 〉 ∝ rτm and 〈|δum

r |〉 ∝ rζm of our framework with those observed in numerical
simulations of forced steady states of homogeneous and isotropic turbulence [5, 6, 7]. Since the simulations agree well
with our framework, its conditions (i)–(iv) should serve at least as a good approximation of the actual turbulence.

CONCLUDING COMMENTS

The present framework is necessary and sufficient for the self-similar PDF of ln εr. We expect such a self-similarity from
the local and instantaneous transfer of the kinetic energy, which occurs not only to the smaller scales but also to the larger
scales. These scales interact with one another and should have settled into some self-similar state.
The present framework is based on that of Kida [8], which gives τm = −µ(mα − m)/(2α − 2) with two free parameters
µ > 0 and 0 < α ≤ 2 even if the smoothing dimension D is given. We have obtained τm = −Dm+Dmα with 0 < α <
1 that always satisfies τm/m > −D at m > 0 and τm/m → −D as m → +∞.
We have not considered the fluctuations at the largest scale R of the inertial range. In fact, εR fluctuates significantly even
if the turbulence is fully developed and is filling in the space [9, 10]. Although such fluctuations are unlikely to affect the
value of the exponent τm [1], we would have to incorporate them into the present framework in the future.
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